

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4 . On Resistance Variation with Gate-to-Source Voltage.

Figure 6 . Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Thermal Characteristics

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.

SO-8 Tape and Reel Data and Package Dimensions

SOIC(8lds) Packaging
Configuration: Figure 1.0

Antistatic Cover Tape

Packaging Description:

SOIC-8 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate
resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13 " or 330 cm diameter reel. The reels are static coated). Other option comes in 500 units per 7 " or 177 cm diameter reel. This and some other options are further described in the Packaging Information table.
These full reels are individually barcode labeled and placed inside a standard intermediate box (illustrated in figure 1.0) made of recyclable corrugated brown paper. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.

SOIC-8 Unit Orientation

F63TNR Label sample

SOIC(8Ids) Tape Leader and Trailer Configuration: Figure 2.0

SO-8 Tape and Reel Data and Package Dimensions, continued

SOIC(8Ids) Embossed Carrier Tape

Configuration: Figure 3.0

Dimensions are in millimeter														
Pkg type	A0	B0	w	D0	D1	E1	E2	F	P1	P0	K0	T	Wc	Tc
SOIC(8lds) (12mm)	$\begin{aligned} & 6.50 \\ & +/-0.10 \end{aligned}$	$\begin{aligned} & 5.30 \\ & +1-0.10 \end{aligned}$	$\begin{aligned} & 12.0 \\ & +/-0.3 \end{aligned}$	$\begin{aligned} & 1.55 \\ & +1-0.05 \end{aligned}$	$\begin{aligned} & 1.60 \\ & +/-0.10 \end{aligned}$	$\begin{aligned} & 1.75 \\ & +1-0.10 \end{aligned}$	$\begin{aligned} & 10.25 \\ & \text { min } \end{aligned}$	$\begin{aligned} & 5.50 \\ & +1-0.05 \end{aligned}$	$\begin{aligned} & 8.0 \\ & +--0.1 \end{aligned}$	$\begin{aligned} & 4.0 \\ & +/-0.1 \end{aligned}$	$\begin{aligned} & 2.1 \\ & ++-0.10 \end{aligned}$	$\begin{aligned} & 0.450 \\ & +/- \\ & 0.150 \end{aligned}$	$\begin{aligned} & 9.2 \\ & +/-0.3 \end{aligned}$	$\begin{aligned} & 0.06 \\ & +1-0.02 \end{aligned}$

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-48 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation

$\underset{\text { maximum }}{0.5 \mathrm{~mm}} \rightarrow$

Sketch C (Top View)
Component lateral movement
SOIC(8Ids) Reel Configuration: Figure 4.0
Sketch B (Top View)
Component Rotation

13" Diameter Option
W2 max Measured at Hub

"Diameter Option

DETAIL AA

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	$\operatorname{Dim} \mathrm{N}$	Dim W1	Dim W2	Dim W3 (LSL-USL)
12 mm	7" Dia	$\begin{aligned} & 7.00 \\ & 177.8 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 2.165 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.488+0.078 /-0.000 \\ & 12.4+2 / 0 \end{aligned}$	$\begin{aligned} & 0.724 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 0.469-0.606 \\ & 11.9-15.4 \end{aligned}$
12 mm	13" Dia	$\begin{aligned} & 13.00 \\ & 330 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 7.00 \\ & 178 \end{aligned}$	$\begin{aligned} & 0.488+0.078 /-0.000 \\ & 12.4+2 / 0 \end{aligned}$	$\begin{aligned} & 0.724 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 0.469-0.606 \\ & 11.9-15.4 \end{aligned}$

SO-8 Tape and Reel Data and Package Dimensions, continued

SOIC-8 (FS PKG Code S1)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
CoolFET ${ }^{\text {Tm }}$	MICROWIRE ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {™ }}$	РОРтм	VCX ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {M }}$	PowerTrench ${ }^{\text {TM }}$	
FACT ${ }^{\text {т }}$	QFET ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	
FAST ${ }^{\circledR}$	Quiet Series ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
GTO ${ }^{\text {¹ }}$	SuperSOT™-6	
HiSeC ${ }^{\text {¹ }}$	SuperSOT™-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

